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Abstract - The formation of porphyry Cu deposits in calc-alkaline magmatic arcs is considered to be the

cumulative product of a wide range of processes beginning with dehydration of the subducting oceanic slab.

No single process is key to the formation of large deposits, but the absence or inefficient operation of any

contributory process, or the action of a deleterious process, can stunt or prevent deposit formation.

A starting premise is that normal calc alkaline arc magmas have the potential ultimately to form a porphyry

Cu deposit (i.e., arc magmas are inherently “fertile”).  This characteristic is ascribed to the relatively high

oxidation state and high H
2
O, Cl, and S contents of typical arc magmas (metal contents do not need to be

anomalously enriched).  Given the availability of such magma, the next most important factor in the formation

of large porphyry Cu deposits is the flux of this magma reaching the upper crust.  The supply of magma must

be sufficiently voluminous and localised to maintain an active upper crustal magma chamber of ≥100 km3 in

order for enough Cu (and S) to be available for extraction by magmatic hydrothermal fluids.  These

requirements imply a long-lived magmatic system rooted in the supra-subduction zone mantle wedge, with

the formation of an extensive lower-crustal melting and assimilation (MASH) zone.  Compressional tectonic

regimes are thought to favour the formation of such magma bodies as sill complexes deep in the lithosphere.

Relaxation of compressional stress permits the voluminous rise of buoyant, evolved magmas to upper crustal

levels, and explains the common occurrence of porphyry Cu deposits at the end of protracted tectono-

magmatic events.  Pre-existing zones of structural weakness in the crust facilitate magma ascent, and dilational

volumes at transpressional jogs and step-overs in strike-slip fault systems provide optimal conditions for

focused flow and emplacement.  The geometry of the upper crustal magma chamber so formed includes a

cupola zone (commonly ≤2 km depth) into which bubble-rich, buoyant magma rising from depths of >5 km

convectively circulates, releasing its volatile load into the overlying carapace.  This fluid dynamic mechanism

enables efficient partitioning of metals from a large volume of magma into the exsolving hydrothermal

fluid, and achieves focused delivery of that fluid into the carapace zone.  Cooling of the fluid and wallrock

reactions result in efficient precipitation of metals in association with potassic and, in some deposits, phyllic

alteration.

Ore-forming potential may be spoiled by tectonic conditions and histories that do not focus magma generation

and emplacement, crustal conditions (such as the presence of reduced lithologies in the deep crust) that

cause early sulphide saturation and segregation, or catastrophic explosive volcanism that destroys the

magmatic-hydrothermal ore-forming process by venting fluids directly to the surface.

Exploration indicators for large porphyry Cu deposits include the development of a well-established magmatic

arc with concentrations of sub-volcanic plutonic centres, localised by large-scale structural features.

Introduction

Porphyry Cu-(Mo-Au) deposits, henceforth referred to as

porphyry Cu deposits, are formed by hydrothermal fluids

exsolved from subduction-related arc magmas.  Porphyry

Cu deposits are found in association with magmatic arcs

worldwide, but large deposits tend to be clustered in both

space and time (Clark, 1993).  The host magmatic systems

tend to be of felsic to intermediate calc-alkaline

composition, although these upper crustal magmas are

derivative from more mafic, ultimately mantle-derived,

sources.  Indeed, more mafic (dioritic) host rocks commonly

occur in island arc settings where the crust is thinner

(implying less differentiation and crustal interaction), and

more alkaline (shoshonitic) intrusions occur in back-arc

settings where rapid magma ascent from depth is facilitated

by extensional tectonics.  There is a general tendency, with

many exceptions, for the latter two deposit associations to

be relatively Au-rich (Kesler, 1973; Kesler et al., 1977;

Jones, 1992; Sillitoe, 1989, 1993, 1997, 2000; Lang et al.,

1995).

A fundamental tenet of this paper is that the formation of

calc-alkaline porphyry Cu deposits is a normal, if rare,
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product of arc tectono-magmatic processes (Burnham,

1981; Cline and Bodnar, 1991; Cline, 1995).  The rarity of

large porphyry Cu deposits is interpreted to be not so much

a function of unique events, as a fortuitous convergence of

common processes that act together or cumulatively to

optimise conditions for ore formation.  In this paper the

terms “large” and “giant” deposits are used in a general

sense to describe unusually large systems in terms of their

metal content.  Note, however, that the word “giant” has

been given specific meaning by Clark (1993; following the

National Academy of Sciences, 1975), and refers to deposits

containing 3.2 to 10 Mt (ie. million tonnes) of Cu (“super-

giant” deposits contain 10 to 31.2 Mt Cu, and

“behemothian” >31.2 Mt Cu).  Examples of porphyry Cu

deposits containing >10 Mt Cu include Chuquicamata, El

Abra, La Escondida and El Teniente in Chile, Cerro

Colorado in Panama, Grasberg in Indonesia, Sar Cheshmeh

in Iran, Cananea in Mexico, and Bingham Canyon in the

USA (Clark, 1993).

This paper reviews the range of processes that affect arc

magmas and their exsolved hydrothermal fluids from

magmagenesis to mineral precipitation, and discusses how

these factors contribute to ore-forming potential.  Such

processes control the total metal content of the deposits,

and also the hypogene grade and metal ratios.  Ultimately

however, the economic value of a porphyry Cu deposit may

have little to do with the size of the hypogene system, but

instead may be controlled by post-emplacement processes

Figure 1:  Structure and processes in a subduction zone and continental arc (modified from Winter, 2001, and

Richards, 2003a).  Primary arc magmas are derived from partial melting of the metasomatised mantle wedge.  Pooling

of these mafic magmas at the base of the overlying crust results in crustal melting and assimilation, with storage and

homogenisation in large lower crustal sill complexes (MASH process).  After evolution to less dense compositions,

intermediate-composition magmas rise to upper crustal levels.  20% of these magmas may erupt at the surface.

such as uplift, erosion, and weathering history.  These

secondary aspects of ore deposit evolution are beyond the

scope of this paper.

Sources and Characteristics of Primary

Arc Magmas

Slab Dehydration, Mantle Metasomatism, and Partial

Melting

Calc-alkaline arc magmas are believed to be derivative from

primary melts generated in the asthenospheric mantle

wedge above a subducting oceanic plate (Fig. 1; Tatsumi

et al., 1986; Peacock, 1993; Arculus, 1994).  The unique

chemical characteristics of arc magmas, such as their high

H
2
O and sulphur contents, high large-ion lithophile element

(LILE: Rb, K, Cs, Ba and Sr) concentrations, enrichments

in Li, B, Pb, As and Sb, and relative depletions in Ti, Nb

and Ta, are attributed to metasomatism of the mantle wedge

by fluids released from the subducting slab (e.g., Davidson,

1996; Noll et al., 1996; de Hoog et al., 2001).  High-pressure

(~3 GPa), low-temperature (700-800°C) metamorphic

conversion of the oceanic crust from blueschist to eclogite

facies rock at a depth of ~100 km involves the breakdown

of hydrous minerals such as serpentine, amphibole, zoisite

and lawsonite (Tatsumi, 1986; Schmidt and Poli, 1998;

Winter, 2001; Forneris and Holloway, 2003) with the release

of a fluid phase enriched in water-soluble elements (LILE,

sulphur, halogens).  These fluids infiltrate and hydrate the
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overlying mantle, thereby lowering its solidus temperature

and making it more susceptible to melting.  Convection of

this hydrated material into warmer parts of the mantle

wedge (>1000°C), or direct fluid infiltration, results in

partial melting to form primary arc magma.

Analyses of primitive (minimally evolved) magmas from

island arcs suggest that the primary magma composition is

a high-Mg basalt with 1.2-2.5 wt. % H
2
O (Arculus, 1994;

Sobolev and Chaussidon, 1996).

Slab Melting (Adakites)

Primary magmas in subduction zones may also be generated

under certain conditions by direct melting of subducting

oceanic crust, producing adakites.  Adakitic magmas have

recently been implicated in porphyry Cu deposit formation

by some authors (e.g., Thiéblemont et al., 1997; Oyarzun

et al, 2001).  Normally, the geothermal gradient followed

by the slab does not reach high enough temperatures at

shallow enough depths for melting to occur, and the slab

instead undergoes dehydration (as described above).

However, under conditions of high-temperature, shallow,

or stalled subduction, wherein the slab resides at shallow

depths for extended periods of time and warms more

extensively, melting of the metamorphosed basaltic crust

has been proposed to occur (Defant and Drummond, 1990).

Such conditions are favoured by the subduction of young

(≤25 m.y.-old) and therefore buoyant oceanic lithosphere

(Defant and Drummond, 1990; Peacock et al., 1994), where

the plate is torn at discontinuities in subduction angle

(Yogodzinski et al., 2001), or during tectonic

reconfigurations such as subduction zone reversal, arc

migration, or arc collision.

Slab melts have been modelled as having high-alumina

andesitic to dacitic bulk composition, and are characterised

by low Y and heavy rare earth element (HREE), and high

Sr concentrations, due to the presence of residual

hornblende and garnet in the eclogitic source rock

(e.g., SiO2 ≥ 56 wt.%, Al
2
O

3
 ≥ 15 wt.%, MgO usually < 3

wt.%, Y ≤ 18 ppm, Yb ≤ 1.9 ppm, Sr ≥ 400 ppm; Defant

and Drummond, 1990).

Defant and Drummond (1990) based their model of adakite

petrogenesis primarily on island arc magmas where

contamination from continental crustal sources was absent.

However, these same geochemical characteristics can be

generated by partial melting of garnetiferous (eclogitic or

garnet amphibolitic) lower continental crust, and so the

identification of rocks with adakitic chemical signatures in

continental arcs is not a proof of origin by slab melting.

Oyarzun et al. (2001) proposed that magmas involved in

the formation of large Eocene-Oligocene porphyry Cu

deposits in northern Chile were derived from slab melts

because of their high Sr/Y and La/Yb ratios, but Rabbia

et al., (2002) and Richards (2002) argued that these

geochemical signatures were imparted by deep crustal

processes resulting from progressive thickening of the

Andean crust (see also Haschke et al., 2002; Garrison and

Davidson, 2003).  At present, there is no clear indication

that slab melts are critical to the formation of porphyry Cu

deposits.

Primary Arc Magmas: Factors Affecting Metallogenic

Potential

Porphyry Cu deposits are typically associated with suites

of normal calc-alkaline arc magmas, for which partial

melting of the metasomatised mantle wedge is the generally

accepted origin.  Dilles (1987) and Cline and Bodnar (1991)

have argued that such magmas are inherently capable of

forming economic porphyry Cu deposits (i.e., they are

“fertile”), and that special magmas or special magmatic

processes are not required.

The chief characteristics that make calc-alkaline arc

magmas fertile derive ultimately from the slab dehydration

process, which transfers water, sulphur, halogens, LILE,

and possibly metals into the mantle wedge.  Porphyry Cu

deposits are characterised primarily by extreme enrichments

in sulphur and potassium (Hunt, 1991) introduced by

exsolved saline magmatic fluids, and as such the primary

enrichment of arc magmas in these metasomatic

components gives them an obvious advantage as potential

sources over other common magma types, such as relatively

alkali- and volatile-poor mid-ocean ridge basalts (MORB)

or ocean island basalts (OIB).

In addition to these elemental characteristics, arc magmas

are also relatively oxidised, commonly up to two log fO2
units above the fayalite-magnetite-quartz buffer (FMQ+2;

Brandon and Draper, 1996; Parkinson and Arculus, 1999;

Einaudi et al., 2003).  Oxidation of the mantle wedge is

another product of aqueous fluid metasomatism.  Oxidation

state is important because it affects the speciation and

solubility of sulphur in the melt, as well as the stability of

residual sulphide phases in the mantle.  Under oxidising

conditions, sulphide phases are increasingly destabilised,

and sulphur solubility, as dissolved sulphate species,

increases in the melt (Carroll and Rutherford, 1985).  For

example, Jugo et al., (2001, 2003) have shown

experimentally that the solubility of S as sulphate in basaltic

melts at mantle pressures can be as high as 1.5 wt. % S

under oxidising conditions (≥FMQ+2).  The effect is that

chalcophile elements (e.g., Cu and Au, which normally

partition strongly into sulphide phases relative to silicate

magma) will behave as incompatible elements and will

dissolve into the melt.  Thus, primary arc magmas should

contain relatively high concentrations of chalcophile metals

compared with other more reduced mantle-derived

magmas.

Mungall (2002) has taken this argument a step further and

has proposed that adakitic slab melts are particularly

effective mantle oxidising agents because they might

contain a high content of ferric iron derived from oxidised

sea floor basalts.  Although this model seems unlikely to

be a general cause of metal enrichment in normal calc-

alkaline porphyry Cu deposit-forming magmas for the

reasons outlined above (i.e., slab melts are of rare and

restricted occurrence), such a mechanism may well apply

to the formation of unusually Au-rich porphyry deposits

formed in atypical arc settings, such as during arc reversal

or arc collision, where stalled slabs might undergo partial

melting (cf. Solomon, 1990; McInnes and Cameron, 1994;

Richards, 1995; Sillitoe, 1997).
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Deep Lithospheric Processing of Arc

Magmas

Porphyry Cu deposits form both in island arcs with

relatively thin mafic crust, and continental arcs with variable

to thick felsic crust.  This first order relationship suggests

that the composition and character of the upper plate

lithosphere is not a primary control on the fertility of arc

magmas (although it may affect ore metal ratios;

e.g., Kesler, 1973).  Nevertheless, all arc magmas, even

the most primitive, undergo some degree of interaction with

the lithosphere during their ascent towards the surface, and

in continental arcs it has been estimated that evolved

magmas entering the upper crust have undergone tens of

percent of crustal contamination (McBirney et al., 1987;

Hildreth and Moorbath, 1988).  Thus, it is important to

consider how processes of crustal interaction might affect

the evolution of potentially ore-forming magmas.

In continental arcs, Hildreth and Moorbath (1988)

envisaged primitive basaltic magmas intruding the

overlying dense mantle lithosphere until they reach the base

of the crust (Fig. 1).  Being denser than crustal rocks, the

magmas pool in sill complexes at this level and conduct

heat into the overlying crust as they begin to crystallise.  If

the magmatic flux is sustained, temperatures at the base of

the crust will rise and cause partial melting of crustal rocks.

These felsic crustal melts will mix with the evolving mantle-

derived melts to form hybrid intermediate-composition

magmas, with densities that are now lower than typical

crustal rocks (see Richards, 2003, for a review).  These

magmas can then rise buoyantly towards the surface.

Hildreth and Moorbath (1988) termed this combination of

crustal melting and assimilation by primary basaltic

magmas, magma storage at the base of the crust, and magma

homogenisation, the MASH process.

The MASH Zone: Factors Affecting Metallogenic

Potential

MASH processing enhances the fertility of arc magmas by

further concentrating volatiles and incompatible elements

(including chalcophile metals in oxidised magmas) in the

evolved melts.  It is likely, although not essential, that some

metallic components will also be added to the magma from

assimilated crustal materials, and such processes may

explain second-order variations of metal contents and ratios

in ore deposits derived from contrasting basement terranes,

as observed for example in Arizona (Titley, 1987, 2001).

In addition, fractionation of sulphide melt or minerals at

any point during the evolution of these magmas could have

a significant effect on chalcophile metal ratios due to the

much lower abundance of Au and its higher partition

coefficient in sulphides, compared with Cu (Campbell and

Naldrett, 1979).  Residual or fractionated sulphide phases

would thus remove much of the Au from the melt, but would

not significantly affect Cu concentrations unless the volume

of sulphide was large (Fig. 2).  It may be partly for this

reason that Au-rich porphyry deposits are commonly

formed from more mafic and more oxidised magmas, in

which sulphide saturation and fractionation has not occurred

(e.g., Hamlyn et al., 1985; Bornhorst and Rose, 1986;

Richards et al., 1991; Spooner, 1993; Wyborn and Sun,

1994; Richards, 1995; Sillitoe, 1997, 2000).

Just as MASH-zone processes may affect metal ratios in

derived magmas, they may also affect the mass of metals

available for later mineralisation.  The build-up and storage

of large volumes of magma at the base of the crust during

prolonged MASH episodes increases the overall volume

of fertile magma that can subsequently rise into the upper

crust.  If it is accepted that the metals and S in porphyry Cu

deposits are derived primarily from the associated magma,

then the more magma available, the larger the potential ore

deposit.  Thus, large porphyry Cu districts tend to be

associated with large, long-lived, magmatic events.

Following Takada (1994) and others, Richards (2003a)

argued that periods of compression in an arc may promote

extensive MASH zone development by favouring deep

crustal sill formation over vertical dyke propagation.

Porphyry Cu deposits are commonly observed to form late

in any given tectono-magmatic cycle in the arc

(e.g., Maksaev and Zentilli, 1988; McKee and Noble, 1989;

McCandless and Ruiz, 1993; Richards et al., 2001;

Richards, 2003b), corresponding to periods of stress

relaxation and large-volume ascent of evolved magmas into

the upper crust.  Although magmas derived at other times

in the tectono-magmatic cycle from less well developed

MASH zones are probably still fertile, they may not be

emplaced into the crust with sufficient flux (i.e., volume

and rate) to trigger or sustain effective ore-forming systems.

Arc Magma Ascent and Emplacement

The MASH process generates evolved (andesitic) magmas

that are more buoyant than the surrounding crustal rocks.

Buoyancy forces will drive magma ascent through the crust,

perhaps initially as diapirs in the hot, ductile lower crust,

Figure 2: Variation of Cu and Au concentrations in sulphide

melt coexisting with silicate melt as a function of

R = (mass of silicate melt)/(mass of sulphide melt)

(Campbell and Naldrett, 1979).  Cu is only depleted in the

magma if large amounts of sulphide remain in the mantle (>0.1

wt. %; R ≤ 1000), whereas Au-rich magmas can only form

when sulphide abundance falls below ~1 ppm (R ≥ 106).

Assumed sulphide/silicate melt partition coefficients are DCu
= 1000, DAu = 105; assumed metal concentrations in magma

in absence of sulphide: Cu = 50 ppm, Au = 5 ppb.
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but predominantly as dykes in the cooler middle and upper

crust (Fig. 3; see review by Richards, 2003a).  Dykes are

magma-filled fractures, held open by hydraulic pressure

transmitted from the buoyant magma column.  Where large

volumes of vertically-connected buoyant magma exist,

these forces can easily exceed the lithostatic pressure plus

the tensile strength of crustal rocks at the top of the dyke,

resulting in upward propagation through the crust (Lister

and Kerr, 1991; Clemens and Mawer, 1992).

Like faults and fractures, dykes propagate in the σ
1
-σ

2 
plane

perpendicular to σ
3
.  Thus, ideal conditions for vertical dyke

formation are tensile or shear tectonic stress, with σ
3

oriented horizontally.  In contrast, horizontal compressional

stress (σ
3
 vertical) will favour sill formation (Parsons et

al., 1992).  It is for this reason that periods of voluminous

upper crustal plutonism tend to follow compressional

orogenic episodes, during which large volumes of magma

are built up in lower crustal sill complexes (McNulty et al.,

1998; Simakin and Talbot, 2001).  Upon relaxation of

compressional stress or a switch to shear stress, dyke

propagation is facilitated and vertical magma flow ensues.

Because of the ability of dykes to become self-propagating,

and due to the progressive warming of the conduit as fresh

magma continues to pass through it, this process is likely

to accelerate so long as a sufficient magma supply exists.

Thus, it has been estimated that dyke-supplied mid-to-upper

crustal plutons can be filled on time scales of 104-106 years

(Paterson and Tobisch, 1992; Petford, 1996; de Saint-

Blanquat et al., 2001).  These filling rates are comparable

to or exceed the expected convective cooling rates of upper

crustal plutons (e.g., ≤104 years; Cathles, 1981), such that

a continuously molten magma chamber can be maintained

while magma supply lasts.

Although magma buoyancy forces may be sufficient to form

self-propagating dykes, suitably oriented pre-existing

fractures and faults in the crust will provide paths of lower

Figure 3:  Schematic cross-section of magma transport

in a trans-lithospheric shear zone; see text for

details.  Inspired by Brown (1994) and Vigneresse

and Tikoff (1999); modified from Richards (2003a).

No vertical exaggeration, but note mid-crustal scale

change.  PCD = porphyry copper deposit.
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resistance for magma ascent.  For this reason, large-scale

crustal fracture zones, or lineaments, commonly focus the

ascent of deeply derived magmas (Richards, 2000, and

references therein).  Especially favourable loci for magma

ascent occur at jogs or step-overs on strike-slip fault

systems, where vertically-oriented extensional volumes

may form (Fig. 3; Brown, 1994).

Magma Ascent: Factors Affecting Metallogenic Potential

In sufficiently large trans-lithospheric magmatic systems,

the mineralising potential of the magma is unlikely to be

lost on ascent through the crust, because, once started, the

transfer of mass from the lower to the upper crust is rapid

(ascent rates of 10-2 to 10-3 m/s have been estimated by

Clemens and Mawer, 1992, and Petford, 1996).  However,

the ability to construct a mid-to-upper crustal magma

chamber of sufficient volume to sustain an ore-forming

magmatic-hydrothermal system depends critically on the

magma flux.  If the supply rate is too slow, magma will

tend to freeze in dykes en route to the surface (Clemens

and Mawer, 1992), but if the flux is high and is sustained

over a significant period of time, large, long-lived magma

chambers can be constructed.  There is now considerable

evidence that large porphyry Cu deposits form, perhaps in

pulses, over periods of time significantly greater than that

expected for simple cooling of the small host plutons

(diameters commonly <1 km, cooling <<1 m.y.), suggesting

that recharge of the underlying mid-to-upper crustal parental

magma chamber from a deeply-rooted lower crustal

magmatic system may be essential to producing large ore-

forming systems (e.g., Damon, 1986; Marsh et al., 1997;

Richards et al., 1999, 2001; Ballard et al., 2001).

The apparent necessity of a sustained, voluminous magma

supply for formation of large porphyry Cu deposits means

that optimum ore-forming conditions may occur at the end

of prolonged periods of tectonic compression and lower

crustal MASH processing, when stress relaxation facilitates

magma ascent.  This timing is consistent with the late

appearance of porphyry Cu deposits in many arc cycles

around the world (e.g., Richards, 2003a,b, and references

therein).

In addition to these timing constraints, the locations of

maximum magma flux into the upper crust may be

controlled by pre-existing crustal-scale faults, and

particularly by fault intersections or deflections in strike-

slip fault systems where pull-apart volumes may be created

by transpression or transtension.  The emplacement of large

porphyry Cu deposits at or near such loci has been proposed

in several instances, such as Chuquicamata (Maksaev and

Zentilli, 1988; Lindsay et al., 1995), La Escondida

(Richards, 1999; Richards et al., 1999, 2001; Padilla Garza

et al., 2001), and Bajo de la Alumbrera (Sasso and Clark,

1998; Chernicoff et al., 2002).

In combination, therefore, constraints of timing (at the end

of tectono-magmatic epochs) and location (at or near major

fault intersections or deflections) provide powerful tools

for predicting the locations of large porphyry Cu deposits

in magmatic arcs.  These considerations do not prohibit

deposits from forming at other times and in other places

within the arc, but under non-optimal conditions large

deposits are less likely to form.  It should also be noted

that the surface expressions of deep crustal fault systems

typically occupy broad structural zones several kilometres

wide, in keeping with the vertical scale (tens of kilometres)

of such systems (Richards, 2000; Chernicoff et al., 2002).

Predicting the locations of porphyry-forming systems

within these fault zones on this basis to better than a few

kilometres is likely, therefore, to be difficult.  Nevertheless,

even at this distance one is likely to be able to observe

distal hydrothermal alteration effects (e.g., propylitic

alteration), which can extend >5 km from the core of a

large magmatic-hydrothermal system.  Thus, the potential

of such structural zones can be rapidly assessed using

remote sensing and field reconnaissance methods.

Upper Crustal Magmatic and

Hydrothermal Processes

Development of Upper Crustal Magma Chambers

The focus of this review so far has been on the generation

of fertile magmas at depth and their transport into the upper

crust.  A problem arises, however, if these magmas do not

stop within the crust (as intrusions) but erupt at the surface.

Voluminous eruption is obviously not conducive to the

formation of pluton-related ore deposits.  However, despite

the impressive appearance of large stratovolcanoes, it has

been estimated that only ~20% of the magma generated in

an arc actually reaches the surface (Carmichael, 2002).  The

remaining 80% either freezes en route from the lower crust,

or forms plutons within the upper crust.  In addition, the

most voluminous volcanic eruptions associated with

Figure 4:  Variation of densities of magmas and rocks with

pressure (after Herzberg et al., 1983).  Whereas basaltic magmas

are denser than most crustal rock types, andesitic magmas are

lighter and may rise to the surface driven by buoyancy forces

alone.
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magmatic arcs probably do not involve subduction zone

magmas or their differentiates, but instead involve crustal

melts formed after prolonged periods of crustal thickening

and heating (e.g., the Altiplano-Puna volcanic complex;

de Silva, 1989).  Such magmatic systems are not prospective

for porphyry Cu deposits.

Although intermediate composition (andesitic to dacitic)

arc magmas are less dense than typical crystalline crustal

rocks, unvesiculated magmas are more dense than many

supracrustal lithologies (Fig. 4; Herzberg et al., 1983).

Thus, in the absence of vesiculation or excess magma

pressure (from hydrostatic head), magmas will tend to pool

at their level of neutral buoyancy, which is typically close

to the basement/supracrustal contact where rock density

decreases (Fig. 5; Glazner and Ussler, 1988; Walker, 1989;

Lister and Kerr, 1991).  Alternatively, their ascent may be

checked by rheological boundaries, such as the brittle-

ductile transition zone (10-15 km depth, or shallower in

regions of high heat flow such as active magmatic arcs;

Vigneresse, 1995).  Plutons will form at these levels by

lateral propagation and inflation of sills to form laccolithic

(by roof lifting) or lopolithic (by floor depression) magma

chambers (Cruden, 1998; de Saint-Blanquat et al., 2001).

Patanè et al. (2003) have recently described such a system

beneath the active Mount Etna volcano, in which a large,

structurally-located, sill-dyke-complex at 6-15 km depth

feeds a shallower magma reservoir 3-5 km beneath the

volcano.  Roof lifting due to magma chamber inflation is

indicated by GPS measurements and seismic records of

normal faulting from 0-5 km depth beneath the edifice.

If the supply of magma is maintained at a sufficient flux,

the magma chamber will remain molten and the pluton will

expand.  In contrast, a lower flux will result in freezing of

the pluton, with any later magma injections forming

separate small intrusions from which heat and fluids will

be dissipated ineffectually.  Progressive development of a

large upper crustal magma chamber will likely involve at

least some volcanism, and also the emplacement of shallow-

level sub-volcanic stocks or apophyses inflated by evolved,

volatile-rich, low-density magma (Fig. 5; Damon, 1986).

The three-dimensional form of stocks associated with

porphyry Cu deposits is characteristically vertically

elongate, resembling a narrow finger (1-2 km-diameter)

extending to within ~1 km of the surface from a source

pluton several kilometres below (Norton, 1982).

Volatile Exsolution

Volatile exsolution is an inevitable result of the cooling

and fractionation of hydrous arc magmas (water contents

in hornblende-phyric andesitic and dacitic magmas exceed

4 wt.% H
2
O; Burnham, 1979, 1997; Naney, 1983;

Hedenquist et al., 1998).  The large volume increase

Figure 5:   Schematic cross-section through a porphyry Cu forming volcano-plutonic system (modified from Richards,

2003a)   After pooling at an upper crustal density or rheological barrier (LNB = level of neutral buoyancy), intermediate

composition magmas continue to evolve and inject apophyses to shallow levels (some magma may erupt).  Evolved,

bubble-rich magma is convected into the cupola zone where it releases volatiles, with resultant potassic (K) alteration.  As

these fluids cool, they progressively deposit metal sulphide minerals, and alteration becomes hydrolytic (phyllic: Ph).

Intense hydrolytic (advanced argillic: AA) alteration develops near surface.  Propylitic alteration (Pr) is developed in the

surrounding country rocks by the convective circulation of heated groundwaters.



14 General

resulting from this process, combined with the greatly

lowered bulk density of vesiculating magma, is a major

cause of volcanic eruptions (Eichelberger, 1995).  These

same volatiles, however, if separated from the magma

without direct eruption to surface, will cause hydrothermal

alteration and, potentially, porphyry Cu-style

mineralisation.  To form an economic deposit, large

volumes of this fluid must be channelled through and

reacted with small volumes of rock in order to focus mineral

deposition.  Wide dispersion of fluids, or venting to surface

prior to cooling, will not result in porphyry-type ore

formation.

Volatiles exsolve initially from magma as small bubbles

(Candela, 1991).  Although much less dense than the

magma, escape of these bubbles is hampered by melt

viscosity and the presence of crystals (Cloos, 2001).

Instead, the bubble-rich magma may rise convectively to

the top of the chamber as a buoyant plume (Shinohara et al.,

1995).  As the magma rises, the bubbles will expand further

in response to pressure decrease, and may eventually

coalesce to form a volatile-rich carapace (Whitney, 1975).

The degassed, denser magma will sink away to make room

for fresh, hot, buoyant magma in a convective process that

continually releases new volatiles and heat into the

carapace.  In this way, Shinohara et al. (1995) and Cloos

(2001) envisage that the exsolution of volatiles from a large

volume of magma could be spatially focused in the apical

portions of the magma chamber, and, moreover, that this

cupola zone could be maintained at magmatic temperatures

for as long as convective overturn continues.  This condition

is considered to be a prerequisite for porphyry Cu formation,

because the volumes of syn-mineralisation intrusive rocks

exposed in most such mines are insufficient to explain the

large quantities of metals and sulphur if typical magmatic

concentrations of these elements are assumed.  These

components must instead have been efficiently extracted

from much larger volumes of magma at depth, and

transported into the apical zones by convection (Cloos,

2001).

The chemical and physical state of the exsolved magmatic

fluid varies significantly with depth, and is a primary factor

in controlling the partitioning of metals from the magma

into the fluid phase.  Kilinc and Burnham (1972) showed

that chloride contents of initially exsolved aqueous fluids

Figure 6:  Isotherms in P-X space for the NaCl-H2O system (after Pitzer and Pabalan, 1986).  Depth is plotted on the right-hand axis,

assuming lithostatic pressure and a crustal density of 2.7 g/cm3. A supercritical aqueous fluid with 10 wt. % NaCl exsolves from magma in a

chamber at 700°C and 7 km depth (point A).  As it rises into the cupola zone in a convecting plume of bubbly magma, it undergoes aqueous

phase separation from ~4.6 km depth (point B), condensing a saline brine (C) from a vapor that rapidly decreases in salinity as it continues to

rise and cool (dashed line B-D).  By 2 km depth, the two-phase fluid at 600°C will consist of a low density vapour (~0.6 wt. % NaCl; point D)

and a high salinity brine (~60 wt. % NaCl; point E).  Cu is initially transported by the supercritical fluid, and then deposited as the fluid begins

to phase separate and cool.  Inset shows fluid inclusions from the Bigham Canyon porphyry, Utah, which have trapped coexisting vapour and

liquid phases similar to fluids D and E.
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increase with pressure, and Candela and Holland (1984)

showed that Cu solubility in these fluids increases with Cl

content.  Thus, optimum conditions for partitioning of Cu

into a saline magmatic hydrothermal phase appear to be at

pressures ≥1 kbar (depths ≥4 km; Cline and Bodnar, 1991;

Cline, 1995).  This result implies that initial segregation of

metalliferous fluids from the magma must occur well below

the level of the shallow-level apophyses that typically host

ore (1-2 km), and that these fluids then rise, in a buoyant

bubble-rich magma plume, into the cupola zone.  Efficient

sequestering of metals by the aqueous phase would be

expected during ascent of this intimately mixed bubbly

plume.

Phase relationships in the H
2
O-NaCl system and

experimental models indicate that fluids exsolved at ~700°C

and pressures ≥1.2 kbar will be supercritical (single phase),

and with salinity near 10 equiv. wt. % NaCl (Fig. 6;

Sourirajan and Kennedy, 1962; Pitzer and Pabalan, 1986;

Cline and Bodnar, 1991; Cline, 1995).  Upon ascent and

depressurisation however, these fluids will undergo phase

separation to form a high salinity brine and a lower salinity

vapour, the latter becoming rapidly more dilute as pressure

falls (Fig. 6; Henley and McNabb, 1978).  The bulk of the

Cu is probably transported by the saline brine, although

some metal also appears to be transported in the early high-

temperature vapour phase (Lowenstern et al., 1991;

Heinrich et al., 1999; Williams-Jones et al., 2002, 2003).

Magmatic-hydrothermal Processes: Factors Affecting

Metallogenic Potential

Maintaining metallogenic potential of the ascending arc

magmas is, until their arrival in the upper crust, largely a

function of magma flux (i.e., supply rate and volume).  In

other words, a sufficient volume of metal-bearing magma

must be delivered into the upper crust, and it must be

delivered quickly enough to maintain it in a molten state

while metals are partitioned into a hydrothermal fluid phase.

Once the magma is emplaced, a large number of variables

play a role in determining the efficiency of this metal

transfer process, including magmatic volatile content

(especially H
2
O, Cl, and S), oxidation state, depth of

emplacement, form of the sub-volcanic apical region, and

eruptive history.  These are variables that are largely unique

to any given body of magma and its crustal environment

(including rheological, structural, and tectonic regime), and

are therefore hard to predict.  Nevertheless, these factors

may all or individually exert absolute control on ore

formation.  For example, if the aqueous fluid phase is

exsolved late or in small volumes, minimal hydrothermal

transport of metals will occur, and no ore deposit will be

formed (Cline and Bodnar, 1991).

Of major and overriding importance is the need for the

hydrothermal fluid phase to interact with a large volume

of magma, because Cu concentrations in intermediate

composition magmas are quite low (10-150 ppm Cu; Gill,

1981).  Cline and Bodnar (1991) and Cline (1995) have

suggested that a moderate-sized porphyry Cu deposit could

be formed from as little as 30-50 km3 of magma, although

larger volumes (perhaps 300 km3) might be required to form

a behemoth such as El Teniente.  [Note that Cloos (2001)

suggested that a magma volume ten times this size would

be required to supply all the metal in the El Teniente

porphyry Cu deposit (>93 Mt Cu; Skewes et al., 2002), but

in personal communication Mark Cloos (2003) agrees that

there was an order-of-magnitude error in this calculation.]

A simple mass balance calculation supports this view:

Average [Cu] in andesitic magma = 60 ppm Cu

ΣCu in super-giant ore deposit = 10 Mt Cu

Requires 10 Mt / 60 ppm of magma

 ≈ 1.7 x 1011 t of magma

Magma density = 2.7 g/cm3   = 2.7 t/m3

Magma volume required = (1.7 x 1011/ 2.7) m3

≈ 6.3 x 1010 m3

Assuming 100% extraction efficiency = 63 km3

Accepting that extraction efficiencies will be well below

100%, minimum volumes of at least 100 km3 of magma

are therefore probably required to form super-giant

(>10 Mt Cu) orebodies.

Similar mass-balance calculations for sulphur, if based on

typical sulphur solubilities in felsic magmas (100 ppm),

suggest that volumes in excess of 4800 km3 would be

required to form the 30 Mt Cu Bingham Canyon porphyry

deposit (Hattori and Keith, 2001).  However, as these

authors point out, the volume decreases by more than an

order of magnitude (to 152 km3) if a more mafic source

magma with higher sulphur solubility is used in the

calculation (see also Wallace, 2001).  The latter scenario

seems logical in the light of the preceding discussion of

arc magma evolution, in which magma compositions were

shown to evolve from primary high-Mg basalts generated

in the mantle wedge (containing up to 1.5 wt. % S; Jugo

et al., 2001, 2003), to the intermediate to felsic magmas

that are ultimately emplaced in the upper crust.  The latter

are derivative compositions, and are not representative of

the bulk magma flux.

The volumes of magma (102-103 km3) suggested by these

calculations imply active connection between the upper

crustal cupola zone (with a volume of only a few km3) and

a mid-crustal magma chamber of batholithic proportions.

For example, Dilles and Proffett (1995) have shown that

the Yerington porphyry district was underlain by a

differentiating batholith of >1000 km3, and Ballantyne et

al. (1995) suggested that the Bingham Canyon porphyry

was underlain by a batholith of >5000 km3.  Although

batholiths are a common feature of arcs, they are mostly

constructed slowly from individual plutons over several

millions of years (e.g., Cobbing, 1982), and so may not

provide the degree of continuous magmatic activity required

to source a large porphyry system.  Active magma chambers

of sufficient size may be quite rare in the history of an arc,

although evidence for the present-day existence of a large

mid-crustal magma chamber (~20 km depth) has recently

been found beneath the Altiplano-Puna region of the central

Andes (Schilling and Partzsch, 2001; Zandt et al., 2003).

The rarity of formation of magma sources of this volume

may partially explain the rarity of large porphyry Cu

provinces.  However, when conditions are suitable for the

formation of regionally extensive mid-crustal magma

chambers, then the evolution of multiple porphyry Cu
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systems might be expected.  This condition could explain

the common clustering of such deposits, both in space and

time (e.g., Sillitoe, 1988).

Summarising the above discussion, the construction of

large, active magma chambers requires a high magma flux

from depth, which brings us back to the necessity of

developing a large-volume MASH zone as a precursor for

giant porphyry Cu deposit formation.

Mafic Magma Recharge

Recently, Hattori and Keith (2001) have argued that

recharge of upper crustal felsic magma chambers by

primitive mafic melts might be an essential step in the

formation of large porphyry Cu deposits, because of the

higher concentrations of chalcophile metals and sulphur in

mafic magmas compared with felsic melts.  In support of

this theory, Hattori and Keith (2001) pointed to the Bingham

Canyon porphyry Cu deposit and the 1991 Mt. Pinatubo

eruptions, where evidence for mingling of felsic and mafic

magmas can be found.

Magma mixing is a common feature of eruption products

from arc volcanoes, and has been suggested to be a trigger

for some explosive volcanic eruptions (Walker, 1989; de

Silva, 1991; Feeley and Davidson, 1994; Eichelberger,

1995; Straub and Martin-Del Pozzo, 1996; Murphy et al.,

2000; Schmitt et al., 2001).  However, in most such cases

the mafic end-member is not “primitive” in the strict sense

of the word (i.e., a minimally evolved magma with high Ni

and Cr content), but merely a less evolved mafic-to-

intermediate magma from the same deep-seated magmatic

system.  The ascent of truly primitive magmas to shallow

crustal levels is uncommon in volcanic arcs, and is

particularly rare in continental arcs, where the thick felsic

crust acts as a density filter (Hildreth and Moorbath, 1988;

Carmichael, 2002).  Primitive mafic magma recharge,

therefore, seems to be an unlikely and unsystematic

mechanism for forming porphyry Cu deposits, which are

highly reproducible in form, space, and time within

magmatic arcs (Sillitoe, 1988, 1992).  It is also not clear

why such a special mechanism should be required, when

normal magmatic evolution of oxidised, hydrous arc

magmas can potentially achieve the same result.

Despite these misgivings about the applicability of this

model for forming normal porphyry Cu deposits, it may

yet have validity in the formation of less common Au-rich

porphyry systems, of which Bingham Canyon is an

example.  As discussed above, primitive mafic magmas

may well retain higher Au/Cu ratios than more evolved

magmas, especially if the latter have evolved in the presence

of, or have fractionated, sulphide phases (Richards, 1995).

Richards (1997) noted that mafic magmas related to alkalic-

type Au deposits are commonly emplaced in post-

subduction, collisional, or back-arc settings.  A feature of

such settings is the existence of localised extensional or

transtensional structural domains, which facilitate the

shallow ascent of primitive magmas.  Some of the largest

Au-rich porphyry Cu deposits, such as Bingham Canyon,

Grasberg, and Bajo de la Alumbrera, also formed in back-

arc or off-arc settings.  Here, extensional tectonics

(e.g., Guilbert, 1985; Ballantyne et al., 1995; Luck et al.,

1999) may have played a similar role in enabling the

shallow ascent of primitive Au-rich magmas, which then

mixed with, or “spiked”, more felsic magma chambers in

the upper crust.

Porphyry Cu Ore Formation

General Model

Landmark studies by Meyer and Hemley (1967), Lowell

and Guilbert (1970), Gustafson and Hunt (1975), and

Hollister (1975) defined the characteristic framework of

hydrothermal alteration and mineralisation in porphyry Cu

deposits (Fig. 5; see review by Hedenquist and Richards,

1998).  Three decades of additional research have modified

these original descriptions only in detail, and have served

to underline the remarkable reproducibility of these large

ore forming systems.  In their simplest form, porphyry Cu

deposits are formed by precipitation of Cu-Fe-sulphide

minerals during cooling, phase separation, and reaction of

the exsolved magmatic-hydrothermal fluid with wallrocks.

Early high temperature potassic alteration (700-350°C;

Einaudi et al., 2003) produces an assemblage similar to

that present in the igneous source rocks (e.g., quartz, K-

feldspar, biotite, ± magnetite) because the fluid is still close

to equilibrium with the near-solidus magma.  As the fluid

cools (towards ~350°C), however, disproportionation of

sulphur, predominantly dissolved as SO
2
 at high

temperature, begins to generate H
2
S and sulphuric acid:

         4 SO
2
 + 4 H

2
O ⇔ H

2
S + 3 HSO

4

-
 + 3 H

+
(1)

This acidity, combined with the increasing reactivity of

other species such as HCl and HF (Hedenquist, 1995),

produces hydrolytic alteration of increasing intensity as the

fluids rise through the carapace and cool.  In addition, the

generation of H
2
S combined with falling temperatures leads

to rapid precipitation of sulphide minerals (Burnham, 1997).

The classic alteration zonation from potassic to near-surface

advanced argillic alteration (clay, alunite, diaspore;

<200°C), with lateral overprinting phyllic alteration

(sericite-pyrite; 350-200°C), can be viewed broadly as a

product of this evolution from hot neutral to cooler highly

acidic fluid conditions (or low to high sulphidation states;

Einaudi et al., 2003).  In detail however, the situation is

more complex, and fluid evolution must be viewed in both

space and time.

Depending on the depth of exsolution, the magmatic

hydrothermal fluid will exist initially either as a

homogeneous supercritical fluid (e.g., at pressures >1.2

kbar, ~700°C), or as separate brine and vapour phases

(pressures <1.2 kbar, ~700°C; Fig. 6).  Cline and Bodnar

(1991) and Cline (1995) have shown that this distinction is

important, leading to early extraction of Cu from the magma

in the first instance, but later and possibly less efficient Cu

extraction in shallower systems.  The process of retrograde

volatile phase separation in deeper systems also appears to

exert an important but poorly understood control on ore

deposition, significant sulphide mineralisation commonly

appearing just after the first evidence for immiscibility in

the fluid inclusion record (e.g., Gustafson and Quiroga,

1995; Arancibia and Clark, 1996).
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A model for independent physical evolution of the brine

and vapour phases was presented by Henley and McNabb

(1978), who suggested that a low density vapour plume

would ascend to shallow levels in the system, leaving the

denser brine at depth.  It is this vapour plume, rich in acidic

volatiles, that gives rise to the shallow level advanced

argillic alteration, broadly coeval with potassic alteration

at depth (Hedenquist et al., 1998).  There is mounting

evidence that these vapours may also be capable of

transporting significant quantities of metals, particularly

at depth (Lowenstern et al., 1991; Heinrich et al., 1999;

Williams-Jones et al., 2002, 2003).

The origin of phyllic alteration has been debated

extensively, because of conflicting stable isotope results

that indicate an important role for meteoric groundwater

in some systems, but evidence for formation from magmatic

fluids in others (Sheppard et al., 1971; Dilles et al., 1992;

Harris and Golding, 2002).  Shinohara and Hedenquist

(1997) and Hedenquist et al., (1998) argued that later fluids

to exsolve from the cooling magmatic system might follow

a low-temperature path towards the surface that would not

intersect the fluid solvus, thus giving rise to moderately

saline (~5 equiv. wt. % NaCl) low-temperature (300-350°C)

liquids that could cause sericitic alteration.  Stable isotopic

indications of the involvement of meteoric groundwater in

some systems might then be explained by later overprinting.

Circulation of groundwater heated by magmatic intrusion

causes coeval propylitic alteration in huge volumes of

country rock extending many kilometres around large

systems (Taylor, 1974; Norton, 1982).  Continuation of

convective groundwater circulation long after solidification

of the source pluton commonly results in propylitic

overprinting of earlier high-temperature alteration styles,

and local formation of argillic alteration (Sheppard et al.,

1969).

Ore minerals such as chalcopyrite, bornite, molybdenite

and pyrite are precipitated from the earliest stages of

magmatic-hydrothermal fluid evolution, but highest

concentrations of hypogene Cu and Mo (and Au) tend to

be found towards the outer edges of the potassic alteration

zone where temperatures are cooling towards 350°C (the

“ore shell” of Lowell and Guilbert, 1970; Giggenbach,

1997).  Ore deposition in this region is primarily a function

of solubility reduction due to cooling, combined with an

increase in the activity of aqueous sulphide species due to

the disproportionation of SO
2
 (equation 1).  Pyrite is the

dominant sulphide mineral precipitated from the cooler,

more acidic fluids generating phyllic alteration.

Fluid Pathways

In order to deposit an economic concentration of metals,

fluid flow must be focused through relatively small volumes

of rock where sulphide mineral precipitation is promoted.

Highest grades of ore may be achieved where these rocks

are also reactive with the fluid, such as carbonate or mafic

volcanic rocks.  Short-circuiting of fluid flow directly to

the surface (e.g., by catastrophic explosive eruption or

volcano sector collapse, as occurred at Lihir Island; Moyle

et al., 1990; Müller et al., 2002; see also Sillitoe, 1994), or

broad dissipation throughout a large volume of country

rock, will reduce the porphyry ore-forming potential of the

system (although it may enhance epithermal ore formation,

as at Lihir).  In contrast, relatively focused flow may be

achieved by brecciation of the carapace zone, and highly

focused flow may correspond to breccia pipe formation.

The textures of porphyry ores indicate that they were

formed near the brittle-ductile transition temperature.  Early

K-silicate-stable veins which formed at temperatures over

~400°C (Fournier, 1999) display evidence of plastic

deformation and vuggy cavities are rare (e.g., “A” veins),

whereas later veins associated with lower-temperature

potassic or phyllic alteration are linear, and preserve open

cavities and breccia textures (“B” and “D” veins of

Gustafson and Hunt, 1975).  Phillips (1973), Burnham

(1979), and Burnham and Ohmoto (1980) discussed the

mechanics of brittle failure in the partially solidified

carapace zone in response to increasing pressure from the

expanding fluid volume, and concluded that this was an

effective way of releasing fluid pressure while at the same

time reacting these fluids with large surface areas of cool

overlying rocks.  The classic three-dimensional stockwork

texture of many porphyry ore zones is a product of hydraulic

fracturing by this expanding, over-pressured fluid (Fig. 7).

Pre-existing structures in the cover rocks, or extensional

faults generated by the stress of pluton emplacement, may

further focus the flow of fluids to form vein deposits or

breccia pipes, in which rich pockets of ore may be deposited

in response to rapid fluid depressurisation and cooling

(Perry, 1961; Sillitoe and Sawkins, 1971; Fletcher, 1977;

Skewes et al., 2002).  The majority of breccia pipes are

barren, however, suggesting that rapid fluid venting may

have prevented ore deposition, rather than focusing it.

Au in Porphyry Cu Deposits

Zonation of Mo and Cu within porphyry Cu deposits is

common but not systematic, with higher Mo/Cu ratios

occurring in the cores of some systems and as haloes in

others (e.g., John, 1978; Williams and Forrester, 1985;

Sillitoe, 1997).  Of greater current economic interest,

however, is the zonation or variation of Au abundance in

porphyry Cu deposits because, although typically a minor

component of the ore, Au credits can significantly affect

the overall value of a mining operation.  Several recent

studies have attempted to explain the anomalous Au-

enrichment of some deposits, and Kesler et al., (2002) have

shown that Cu/Au atomic ratios vary over a wide range

from ~5000 to ~5 000 000, with a mode near 40 000.  Much

of this variability in normal porphyry Cu deposits is likely

to be related to late magmatic or hydrothermal effects, rather

than any fundamental source composition difference

(e.g., Sillitoe, 1979; Muntean and Einaudi, 2000, 2001;

Halter et al., 2002; Kesler et al., 2002).  However, as noted

previously, the supra-subduction zone mantle oxidation

state exerts a strong control on the stability of residual

sulphide phases, which in turn controls the behaviour of

siderophile and chalcophile elements.  Under unusually

oxidising conditions or during multi-stage melting events

in which residual sulphides in the mantle are destroyed

(e.g., during cessation of subduction, subduction reversal,
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or arc collision), relatively oxidised alkalic magmas may

be generated that have the potential to generate Au-rich

porphyry and alkalic-type epithermal deposits (e.g., Hamlyn

et al., 1985; Bornhorst and Rose, 1986; Richards et al.,

1991; Spooner, 1993; Wyborn and Sun, 1994; Richards,

1995; Sillitoe, 1997; see also Mungall, 2002).

Muntean and Einaudi (2000, 2001) argued that gold-rich

porphyry deposits in the Oligo-Miocene Maricunga belt of

northern Chile formed in response to shallow emplacement

(<1 km) of magma, resulting in flashing of high temperature

magmatic fluids and deposition of characteristic auriferous

banded quartz veinlets.  Loss of sulphur species to the

vapour phase during flashing would have inhibited Cu-Fe-

sulphide precipitation and promoted Au deposition.

Simon et al., (2000) and Kesler et al., (2002) presented a

different model in which they suggested that initial Cu/Au

ratios in porphyry ores might be a function of temperature

(and oxidation state) at the time of initial sulphide mineral

precipitation.  They showed that experimental high-

temperature (600°C) bornite-magnetite assemblages

contain an order of magnitude more Au (>1000 ppm) than

lower temperature chalcopyrite-pyrite assemblages.  The

extent of formation and preservation of early high-

temperature sulphide assemblages may therefore control

the bulk Cu/Au ratio of the deposit, but overprinting and

replacement by lower temperature assemblages may

redistribute Au, or even remove it from the system

altogether (perhaps into the epithermal environment).

In contrast, Halter et al., (2002) argued that Cu/Au ratios

in magmatic-hydrothermal fluids might be controlled by

the presence of a late-stage sulphide melt, into which

chalcophile metals would be partitioned.  They argued that

this sulphide melt would rapidly destabilise upon exsolution

of a volatile phase from the magma, releasing metals to the

fluid.  It is not clear, however, how chalcophile metal ratios

are affected by this process, nor why the sulphide

sequestration step is necessary when volatile exsolution can

also effectively scavenge metals from the magma.

Finally, the possibility that magma chamber recharge by

primitive mafic magmas might “spike” the system with Au

(e.g., Hattori and Keith, 2001) has been considered above.

Although such a mechanism is plausible, it remains to be

shown that this is a necessary and universal step in the

formation of Au-rich porphyry Cu deposits.

Conclusions

Giant Porphyries: Extreme, Not Special, Cases

Shallow-level calc-alkaline plutons are common features

of subduction-related magmatic arcs, but the majority are

not intensely hydrothermally altered, and even fewer are

mineralised.  Economic porphyry-type deposits are rarer

still, and “super-giant” porphyries are numbered globally

in the teens (Clark, 1993).  There is a temptation to look

for a magic bullet that will explain the generation of giant

ore deposits, but from the information reviewed above it

would seem that Alan Clark was correct when he concluded

that “there are no systematic qualitative differences between

outsize and smaller examples of the porphyry clan” (Clark,

1993, p 213).  Instead, it is clear that at every step of the

way from initial dehydration of the downgoing slab to

exsolution and evolution of a magmatic-hydrothermal fluid,

multiple and commonly independent processes can either

preserve the ore-forming potential of the system, or destroy

it.  The odds are clearly in favour of spoiling, because at

any stage once the overall process is disrupted it will be

difficult for it to regain its full potential.

Thus, it may be argued that the following criteria and

processes all have to be met or optimised for a giant

porphyry to be formed.  Omission or partial fulfilment of

any one step can be sufficient either to destroy completely

the system’s ore-forming potential, or to result in the

formation of a more modest-sized deposit:

1. Subduction must be maintained at a uniform angle

and relatively rapid rate for a considerable period of

time (perhaps ≥10 m.y.) to build up a large and

localised volume of underplated mafic magma near

the crust-mantle boundary of the overlying plate.

2. Development of a mature MASH zone at this level

requires a period of sustained compressional stress

across the arc, which encourages magma pooling in

lower crustal sill complexes rather than early escape

via dykes.

Figure 7:   (A)  Weathered outcrop showing stockwork veining in potassic alteration, Kuh-e-Panj porphyry copper deposit, Kerman

belt, Iran.   (B)  Stockwork quartz veins with chalcopyrite and molybdenite in biotite-rich potassic alteration, Bingham

Canyon porphyry copper deposit, Utah.

BA
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3. Following an extended period of MASH processing,

stress relaxation or change to moderate shear

conditions will promote dyke formation, and ascent

of large volumes of evolved, volatile-rich (including

H
2
O, Cl, S), metalliferous magma.  A high magma

flux is perhaps the most critical element in this process

because it ensures that sufficient heat and ore-forming

components are delivered to the upper crust.

4. Pre-existing structures in the crust, especially

extensional offset zones along trans-lithospheric

strike-slip fault systems, will serve to focus magma

ascent.

5. Magma flux from the lower crust must be sufficient

and sustained for long enough to construct a large

volume (≥100 km
3
), at least partially continuously

molten, mid-to-upper crustal magma chamber.

6. Volatile exsolution should begin at depth within this

magma chamber (>5 km), causing convection of

bubble-rich, buoyant magma into tall apical stocks,

where volatiles can be released.  A sustained flux of

heat and ore-forming components entering the

chamber by recharge from depth and convected into

the cupola, will prolong and maximise the magmatic-

hydrothermal exchange process.

7. Volatiles should be released in a controlled, focused

and prolonged fashion, allowing the progressive build

up of large concentrations of economic minerals in

depositional sites.

Conversely, specific processes that can destroy ore-forming

potential include:

1. Tectonic changes that alter the rate or angle of

subduction: reducing or shifting the supply of primary

magma to the base of the overlying crust will hinder

development of an extensive MASH zone (although

the onset of changes in tectonic configuration, if

accompanied by stress change, may provide

opportunities for voluminous magma ascent from

previously-developed MASH zones).

2. Stress conditions in the upper plate that are not

conducive to MASH zone formation (e.g., tension).

3. Interaction of ascending magmas with reducing

lithologies in the crustal column, which might cause

early sulphide saturation and removal of chalcophile

metals.

4. Catastrophic explosive (volcanic) bulk release of

volatiles to the surface, which will short-circuit the

porphyry ore-forming process.  Thus, large calderas

are unlikely to be prospective for porphyry deposits,

although they may be prospective for epithermal

systems.

If these various favourable criteria have operated and

negative influences are absent, it should then be possible

for an ordinary calc-alkaline arc magmatic system to form

an economic porphyry Cu deposit, as suggested by Cline

and Bodnar (1991).  The formation of a giant porphyry is

probably the cumulative result of optimisation of each step,

and not of the action of any single or unique process.

Exploration Indicators

There is a significant amount of serendipity involved in

the discovery of any large ore deposit, and many of the

factors listed above that control the size of porphyry Cu

deposits are beyond prediction.  More difficult still is

prediction of the exact location of a large porphyry system

(i.e., to within 1 or 2 km).  Nevertheless, there are some

general features that should characterise prospective arc

terranes, and some specific features that might be used to

focus target selection for first-pass exploration:

1. Large porphyry Cu deposits are likely to be found in

well-established arcs, featuring voluminous

magmatism developed in narrow belts (≤50 km-wide)

over a significant period of time (>5 m.y.).

2. Crustal-scale structural architecture (observed as

lineaments) may focus the ascent of arc magmas, and

lineament intersections where they form pull-apart

structures are likely to be particularly prospective.

Large-scale lineaments commonly represent the

boundaries of basement domains, and can be

recognised from regional-scale gravity or magnetic

surveys and remote sensing (e.g., Chernicoff et al.,

2002).  Such lineaments and lineament intersection

zones may define broad areas of prospectivity, a few

tens of kilometres square.

3. Clusters of shallow-level dioritic plutons (within an

area 10-30 km square) indicating voluminous,

focused magma supply, can be recognised from

regional mapping or airborne geophysics (e.g., Behn

et al., 2001; Richards et al., 2001).  Porphyry Cu

deposits may occur near the centre of such clusters,

where magmatic flux was greatest.

4. Caldera and ignimbrite complexes are probably not

prospective for porphyry Cu deposits, despite their

evidently large magma flux.  Rhyolitic ignimbrites

are derived predominantly from less fertile crustal

melts (lacking key arc components such as sulphur

and chalcophile metals), and large caldera eruptions

likely destroy deeply rooted magmatic-hydrothermal

systems.

5. Regional erosion and weathering history must be

appropriate for exposure and possible supergene

enrichment of shallow level porphyry systems.
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